A neural model of motion processing and visual navigation by cortical area MST.

نویسندگان

  • S Grossberg
  • E Mingolla
  • C Pack
چکیده

Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-organizing neural network model of motion processing in the visual cortex during smooth pursuit

A physiologically based neural network model was constructed to study cortical motion processing during pursuit eye movements. The model consists of three layers of computational units, simulating information processing by direction selective neurons in the primary visual cortex (V1), motion selective neurons in the middle-temporal area, and pursuit selective neurons in the middle-superior-temp...

متن کامل

Optic flow processing in monkey STS: a theoretical and experimental approach.

How does the brain process visual information about self-motion? In monkey cortex, the analysis of visual motion is performed by successive areas specialized in different aspects of motion processing. Whereas neurons in the middle temporal (MT) area are direction-selective for local motion, neurons in the medial superior temporal (MST) area respond to motion patterns. A neural network model att...

متن کامل

A Neurally-Inspired Model for Detecting and Localizing Simple Motion Patterns in Image Sequences

In the present paper, we propose a neurally-inspired model of the primate motion processing hierarchy and describe its implementation as a computer simulation. The model aims to explain how a hierarchical feedforward network consisting of neurons in the cortical areas V1, MT, MST, and 7a of primates achieves the detection of different kinds of motion patterns. Moreover, the model includes a fee...

متن کامل

Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation.

We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field thro...

متن کامل

The neural processing of 3-D visual information: evidence from eye movements.

Primates have several reflexes that generate eye movements to compensate for bodily movements that would otherwise disturb their gaze and undermine their ability to process visual information. Two vestibulo-ocular reflexes compensate selectively for rotational and translational disturbances of the head, and each has visual backups that operate as negative feedback tracking mechanisms to deal wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 1999